On bifurcations in lifts of regular uniform coupled cell networks
نویسنده
چکیده
A lift of a given network is a network that admits the first network as quotient. Assuming that a bifurcation occurs for a coupled cell system consistent with the structure of a regular network (in which all cells have the same type and receive the same number of inputs and all arrows have the same type), it is well known that some lifts exhibit new bifurcating branches of solutions. In this work, we approach this problem restricting attention to uniform networks, that is, networks that have no loops and no multiple arrows. We show that, from the bifurcation point of view, rings and their lifts are special networks. We also prove that generically there are lifts that just exhibit the bifurcating branches determined by the quotient network and, moreover, we identify all generic situations where lifts exist that may exhibit bifurcating branches that do not appear in the quotient itself.
منابع مشابه
Spectrum of the Elimination of Loops and Multiple Arrows in Coupled Cell Networks
A uniform lift of a given network is a network with no loops and no multiple arrows that admits the first network as quotient. Given a regular network (in which all cells have the same type and receive the same number of inputs and all arrows have the same type) with loops or multiple arrows, we prove that it is always possible to construct a uniform lift whose adjacency matrix has only two pos...
متن کاملCenter Manifolds of Coupled Cell Networks
Dynamical systems with a network structure can display anomalous bifurcations as a generic phenomenon. As an explanation for this it has been noted that homogeneous networks can be realized as quotient networks of so-called fundamental networks. The class of admissible vector fields for these fundamental networks is equal to the class of equivariant vector fields of the regular representation o...
متن کاملSimulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...
متن کاملCoupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades
An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کامل